Exam. Code : 103204
Subject Code : 9034

B.A./B.Sc. $4^{\text {th }}$ Semester (Old Syllabus 2014)
 MATHEMATICS

Paper-I

(Statics \& Solid Geometry)
Time Allowed-Three Hours] [Maximum Marks-50
Note :-Attempt FIVE questions in all selecting at least TWO questions each from Sections A and B. All questions carry equal marks.

SECTION-A

1. (a) Two forces $\overrightarrow{\mathrm{P}}$ and $\overrightarrow{\mathrm{Q}}$ acting at a point have a resultant $\overrightarrow{\mathrm{R}}$. If the magnitude of $\overrightarrow{\mathrm{P}}$ is doubled, the magnitude of \vec{R} is doubled and if magnitude of $\overrightarrow{\mathrm{Q}}$ is doubled and reversed in direction, even then magnitude of \vec{R} is doubled. Show that $P: Q: R=\sqrt{6}: \sqrt{2}: \sqrt{5}$.
(b) $\overrightarrow{\mathrm{P}}$ and $\overrightarrow{\mathrm{Q}}$ are two components of a given force $\overrightarrow{\mathrm{F}}$ and its line of action divides the angle between them in the ratio $1: 2$. Prove that $\mathrm{Q}(\mathrm{F}+\mathrm{Q})=\mathrm{P}^{2}$.
5,5

2723(2518)/CTT-1549
1
(Contd.)
2. (a) State and prove $\lambda-\mu$ Theorem
(b) Two like parallel forces $\overrightarrow{\mathrm{P}}$ and $\overrightarrow{\mathrm{Q}}$ act at two points of body. If \vec{Q} be changed to $\frac{P^{2}}{Q}$, show that the line of action of the resultant is same as it would be if the forces are simply interchanged. 5,5
3. (a) Forces of magnitude $\mathrm{P}, 3 \mathrm{P}, 2 \mathrm{P}$ and 5 P act along the sides $A B, B C, C D$ and $D A$ of square $A B C D$. Find the magnitude and direction of their resultant and prove that it meets $A D$ produced at a point E such that $A E: E D=5: 4$.
(b) Show that two coplanar couples of equal and opposite moments are in equilibrium. 5,5
4. (a) One end of a uniform rod of weight W is attached to a hinge and the other end is supported by a string attached to the extremity of the rod. If the rod and the string are inclined at the same angle α to the horizontal, then show that reaction of the hinge is $\frac{W}{4} \sqrt{8+\operatorname{cosec}^{2} \alpha}$.
(b) How high can a particle rest inside a rough hollow sphere of radius a if the coefficient of friction is μ ?

5,5

2723(2518)/CTT-1549
2
(Contd.)
www.a2zpapers.com www.a2zpapers.com
load free old Question papers gndu, ptu hp board, punjab
5. (a) Show that the centre of gravity of a solid right circular cone lies on its axis and divides the axis in the ratio $3: 1$ from the vertex.
(b) If a piece of wire is bent into the shape of an isosceles triangle whose sides are a, a and b, show that the distance of centre of gravity from the base is $\frac{a}{2} \sqrt{\frac{2 a-b}{2 a+b}}$.

SECTION-B

6. (a) The axis of a right circular cylinder of radius 2 has equations $\frac{x-1}{2}=\frac{y}{3}=\frac{z-3}{1}$. Find its equation.
(b) Find the equation of the enveloping cylinder of the sphere $x^{2}+y^{2}+z^{2}-2 x+4 y=1$ having its generators parallel to the line $\mathrm{x}=\mathrm{y}=\mathrm{z} . \quad 5,5$
7. (a) Find the equation of the cylinder whose generators are parallel to the line $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and whose guiding curve is the ellipse $2 x^{2}+3 y^{2}=4, z=1$.
(b) Find the equation of the right circular cylinder whose axis $\mathrm{x}-2=\mathrm{z}, \mathrm{y}=0$ and passes through the point $(3,0,0)$.
8. (a) The section of a cone whose vertex is P and guiding curve the ellipse $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}}{\mathrm{~b}^{2}}=1, \mathrm{z}=0$ by the plane $\mathrm{x}=0$ is a rectangular hyperbola. Show that the locus of P is $\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}+\frac{\mathrm{y}^{2}+\mathrm{z}^{2}}{\mathrm{~b}^{2}}=1$.
(b) Find the equation of the cone with vertex at the origin and which passes through the curve given by $x^{2}+y^{2}+z^{2}+x-2 y+3 z=4$ and $\mathrm{x}^{2}+\mathrm{y}^{2}+\vec{z}^{2}+2 \mathrm{x}-3 \mathrm{y}+4 \mathrm{z}-5$. 5,5
9. (a) Find the equation of the right circular cone whose vertex is at the $(1,-2,-1)$, semi-vertical angle is 60° and the line $\frac{x-1}{3}=\frac{y+2}{-4}=\frac{z+1}{5}$ as its axis.
(b) Prove that the equation $7 \mathrm{x}^{2}+2 \mathrm{y}^{2}+2 \mathrm{z}^{2}-10 \mathrm{zx}+$ $10 x y+26 x-2 y+2 z-17=0$ represents a cone whose vertex is $(1,-2,2)$.
10. (a) Find the equation of reciprocal cone of the given equation of the cone $2 x^{2}+3 y^{2}+4 z^{2}+2 y z+4 z x$ $+6 x y=0$.
(b) If $\mathrm{x}=\frac{1}{2}, \mathrm{y}=\mathrm{z}$ represents one of a set of three mutually perpendiculars generators of the cone $11 y z+6 z x-14 x y=0$, find the equations of the other two.
